Note: Accepted version, published in Statistical Papers, https://doi.org/10.1007/s00362-023-01414-3. It is shown that some theoretically identifiable parameters cannot be empirically identified, meaning that no consistent estimator of them can exist. An important example is a constant correlation between Gaussian observations (in presence of such correlation not even the mean can be empirically identified). Empirical identifiability and three versions of empirical distinguishability are defined. Two different constant correlations between Gaussian observations cannot even be empirically distinguished. A further example are cluster membership parameters in $k$-means clustering. Several existing results in the literature are connected to the new framework. General conditions are discussed under which independence can be distinguished from dependence.


翻译:---- 不可经验辨识或区分的参数,包括高斯观测之间的相关性 Translated abstract: 本文展示了一些在理论上可辨识的参数却不可经验辨识的情况,这意味着它们没有一致的估计量。一个重要的例子是高斯观测之间的常数相关性(在存在这样的相关性下,甚至均值也不可经验辨识)。定义了经验可辨识性和三个版本的经验可区分性。两个不同的高斯观测之间的常数相关性甚至不能经验区分。另一个例子是$ k $-均值聚类中的簇成员参数。与新框架相关的几个现有结果被联系起来。讨论了可以从独立性中可以区分出依赖性的一般条件。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
专知会员服务
23+阅读 · 2021年4月10日
专知会员服务
19+阅读 · 2020年9月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
14+阅读 · 2022年10月15日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
专知会员服务
23+阅读 · 2021年4月10日
专知会员服务
19+阅读 · 2020年9月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员