Note: Accepted version, published in Statistical Papers, https://doi.org/10.1007/s00362-023-01414-3. It is shown that some theoretically identifiable parameters cannot be empirically identified, meaning that no consistent estimator of them can exist. An important example is a constant correlation between Gaussian observations (in presence of such correlation not even the mean can be empirically identified). Empirical identifiability and three versions of empirical distinguishability are defined. Two different constant correlations between Gaussian observations cannot even be empirically distinguished. A further example are cluster membership parameters in $k$-means clustering. Several existing results in the literature are connected to the new framework. General conditions are discussed under which independence can be distinguished from dependence.
翻译:----
不可经验辨识或区分的参数,包括高斯观测之间的相关性
Translated abstract:
本文展示了一些在理论上可辨识的参数却不可经验辨识的情况,这意味着它们没有一致的估计量。一个重要的例子是高斯观测之间的常数相关性(在存在这样的相关性下,甚至均值也不可经验辨识)。定义了经验可辨识性和三个版本的经验可区分性。两个不同的高斯观测之间的常数相关性甚至不能经验区分。另一个例子是$ k $-均值聚类中的簇成员参数。与新框架相关的几个现有结果被联系起来。讨论了可以从独立性中可以区分出依赖性的一般条件。