Cognitive agents such as humans and robots perceive their environment through an abundance of sensors producing streams of data that need to be processed to generate intelligent behavior. A key question of cognition-enabled and AI-driven robotics is how to organize and manage knowledge efficiently in a cognitive robot control architecture. We argue, that memory is a central active component of such architectures that mediates between semantic and sensorimotor representations, orchestrates the flow of data streams and events between different processes and provides the components of a cognitive architecture with data-driven services for the abstraction of semantics from sensorimotor data, the parametrization of symbolic plans for execution and prediction of action effects. Based on related work, and the experience gained in developing our ARMAR humanoid robot systems, we identified conceptual and technical requirements of a memory system as central component of cognitive robot control architecture that facilitate the realization of high-level cognitive abilities such as explaining, reasoning, prospection, simulation and augmentation. Conceptually, a memory should be active, support multi-modal data representations, associate knowledge, be introspective, and have an inherently episodic structure. Technically, the memory should support a distributed design, be access-efficient and capable of long-term data storage. We introduce the memory system for our cognitive robot control architecture and its implementation in the robot software framework ArmarX. We evaluate the efficiency of the memory system with respect to transfer speeds, compression, reproduction and prediction capabilities.


翻译:人类和机器人等认知物剂通过大量传感器,产生需要处理以产生智能行为的数据流,从而产生需要处理的数据流,从而看待其环境。认知力和AI驱动机器人的一个关键问题是,如何在认知机器人控制结构中有效地组织和管理知识。我们争辩说,记忆是这种结构的核心积极组成部分,这种结构在语义和感官机器人代表之间进行介质,使数据流和事件在不同进程之间发生流动,提供认知结构的组成部分,提供由数据驱动的服务,以便从感官模具数据中提取语义学,使执行和预测行动效果的象征性计划相匹配。根据相关工作以及在开发我们的ARMARM 人类机器人系统方面取得的经验,我们确定了记忆系统的概念和技术要求,作为认知机器人控制结构的核心组成部分,便利实现高层次的认知能力,如解释、推理、前景、模拟和增强。从概念上看,记忆应该是积极的,支持多模式数据表达、关联性知识、内向性,并且具有内在的预测性计划性计划性计划性计划,基于开发我们的ARM 人类机器人机器人机器人机器人机器人机器人操作结构,技术、我们对内存效率的内存和内存结构的设计、内存分析、内存系统的设计、我们对内存系统进行长期的内存和内存的内存的内存结构的内存和内存分析。

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月21日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
35+阅读 · 2021年8月2日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员