Spiking Neural Networks (SNNs) promise efficient and dynamic spatio-temporal data processing. This paper reformulates a significant challenge in radio astronomy, Radio Frequency Interference (RFI) detection, as a time-series segmentation task suited for SNN execution. Automated systems capable of real-time operation with minimal energy consumption are increasingly important in modern radio telescopes. We explore several spectrogram encoding methods and network parameters, applying first and second-order leaky integrate and fire SNNs to tackle RFI detection. We introduce a divisive normalisation-inspired pre-processing step, improving detection performance across multiple encodings strategies. Our approach achieves competitive performance on a synthetic dataset and compelling initial results on real data from the Low-Frequency Array (LOFAR). We position SNNs as a viable path towards real-time RFI detection, with many possibilities for follow-up studies. These findings highlight the potential for SNNs performing complex time-series tasks, paving the way towards efficient, real-time processing in radio astronomy and other data-intensive fields.
翻译:脉冲神经网络(SNNs)有望实现高效、动态的时空数据处理。本文将射电天文学中的一个重要挑战——射频干扰(RFI)检测——重新定义为适合SNN执行的时序分割任务。能够在低能耗下实时运行的自动化系统在现代射电望远镜中日益重要。我们探索了多种频谱图编码方法和网络参数,应用一阶和二阶泄漏积分发放脉冲神经网络来解决RFI检测问题。我们引入了一种受除法归一化启发的预处理步骤,该步骤提升了多种编码策略下的检测性能。我们的方法在合成数据集上取得了具有竞争力的性能,并在来自低频阵列(LOFAR)的真实数据上获得了令人信服的初步结果。我们将SNNs定位为实现实时RFI检测的可行路径,并为后续研究提供了多种可能性。这些发现凸显了SNNs执行复杂时序任务的潜力,为射电天文学及其他数据密集型领域实现高效实时处理铺平了道路。