Extending Named Entity Recognition (NER) models to new PII entities in noisy spoken-language data is a common need. We find that jointly fine-tuning a BERT model on standard semantic entities (PER, LOC, ORG) and new pattern-based PII (EMAIL, PHONE) results in minimal degradation for original classes. We investigate this "peaceful coexistence," hypothesizing that the model uses independent semantic vs. morphological feature mechanisms. Using an incremental learning setup as a diagnostic tool, we measure semantic drift and find two key insights. First, the LOC (location) entity is uniquely vulnerable due to a representation overlap with new PII, as it shares pattern-like features (e.g., postal codes). Second, we identify a "reverse O-tag representation drift." The model, initially trained to map PII patterns to 'O', blocks new learning. This is resolved only by unfreezing the 'O' tag's classifier, allowing the background class to adapt and "release" these patterns. This work provides a mechanistic diagnosis of NER model adaptation, highlighting feature independence, representation overlap, and 'O' tag plasticity. Work done based on data gathered by https://www.papernest.com


翻译:将命名实体识别(NER)模型扩展至嘈杂口语数据中的新型个人身份信息(PII)实体是一项常见需求。我们发现,在标准语义实体(PER、LOC、ORG)与新型基于模式的PII实体(EMAIL、PHONE)上联合微调BERT模型,对原始类别的性能影响极小。我们探究这种“和平共存”现象,假设模型使用了独立的语义特征与形态特征机制。通过采用增量学习设置作为诊断工具,我们测量了语义漂移并得到两个关键发现:首先,LOC(地点)实体因与新型PII存在表征重叠而具有独特脆弱性,因其共享类模式特征(如邮政编码);其次,我们识别出“反向O标签表征漂移”现象——初始训练将PII模式映射至'O'标签的模型会阻碍新知识学习,此问题仅通过解冻'O'标签分类器才得以解决,使背景类别能够自适应并“释放”这些模式。本研究为NER模型适应机制提供了系统性诊断,揭示了特征独立性、表征重叠与'O'标签可塑性等关键特性。研究工作基于https://www.papernest.com 收集的数据完成。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2023年3月8日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2021年7月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
11+阅读 · 2023年3月8日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2021年7月20日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员