Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. Inspired by portfolio theory, where uncorrelated assets reduce risk by $\sqrt{P}$, we prove hallucination probability is bounded by representational correlation: $P(H) \leq f(\sigma^2((1-\rho(P))/P + \rho(P)), \mu^2)$, which predicts that language models need an optimal amount of neurodiversity. To validate this, we introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and demonstrate that ND-LoRA reduces hallucinations by up to 25.6% (and 14.6% on average) without degrading general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational analyses indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different amounts of optimal neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
翻译:尽管语言模型的参数量、计算资源和数据规模持续增长,幻觉问题依然存在。我们提出神经多样性——即去相关的并行表征——作为一种机制性原理,能够在固定参数和数据预算下降低幻觉发生率。受投资组合理论启发(其中不相关资产可通过$\sqrt{P}$降低风险),我们证明幻觉概率受表征相关性约束:$P(H) \leq f(\sigma^2((1-\rho(P))/P + \rho(P)), \mu^2)$,该公式预测语言模型需要最优化的神经多样性水平。为验证此理论,我们提出ND-LoRA(神经多样性低秩自适应)方法,将并行LoRA适配器与Barlow Twins正则化相结合,实验表明ND-LoRA在保持整体准确率不下降的前提下,最高可减少25.6%的幻觉现象(平均减少14.6%)。消融实验显示LoRA适配器与正则化具有协同效应,因果干预证明神经多样性是中介因素,相关性分析揭示规模效应:神经相关性每增加0.1%,幻觉率相应上升3.8%。最后,研究发现了任务依赖性最优解:不同任务需要不同水平的神经多样性。综上,我们的研究结果表明神经多样性可作为扩展的第三维度——独立于参数和数据规模——在固定预算下提升语言模型的可靠性。