Pilot contamination remains a major bottleneck in realizing the full potential of distributed massive MIMO systems. We propose two dynamic and scalable pilot assignment schemes designed for practical deployment in such networks. First, we present a low-complexity centralized scheme that sequentially assigns pilots to user equipments (UEs) to minimize the global channel estimation errors across serving access points (APs). This improves the channel estimation quality and reduces interference among UEs, enhancing the spectral efficiency. Second, we develop a fully distributed scheme that uses a priority-based pilot selection approach. In this scheme, each selected AP minimizes the channel estimation error using only local information and offers candidate pilots to the UEs. Every UE then selects a suitable pilot based on its AP priority. This approach ensures consistency and minimizes interference while significantly reducing pilot contamination. The method requires no global coordination, maintains low signaling overhead, and adapts dynamically to the UE deployment. Numerical simulations demonstrate the superiority of the proposed schemes in terms of network throughput when compared to the existing state-of-the-art schemes.


翻译:导频污染仍然是实现分布式大规模MIMO系统全部潜力的主要瓶颈。我们提出了两种动态且可扩展的导频分配方案,专为此类网络的实际部署而设计。首先,我们提出了一种低复杂度的集中式方案,该方案顺序地为用户设备分配导频,以最小化所有服务接入点上的全局信道估计误差。这提高了信道估计质量,减少了用户设备间的干扰,从而提升了频谱效率。其次,我们开发了一种完全分布式的方案,该方案采用基于优先级的导频选择方法。在此方案中,每个被选中的接入点仅利用本地信息来最小化信道估计误差,并向用户设备提供候选导频。随后,每个用户设备根据其接入点优先级选择合适的导频。这种方法确保了一致性并最小化了干扰,同时显著减少了导频污染。该方法无需全局协调,保持了较低的信令开销,并能动态适应用户设备的部署。数值仿真结果表明,与现有最先进方案相比,所提方案在网络吞吐量方面具有优越性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员