Visual attention is one of the most significant characteristics for selecting and understanding the outside redundancy world. The nature complex scenes, including larger redundancy and human vision, cannot be processing all information simultaneously because of the information bottleneck. The human visual system mainly focuses on dominant parts of the scenes to reduce the input visual redundancy information. It is commonly known as visual attention prediction or visual saliency map. This paper proposes a new saliency prediction architecture WECSF which inspired by human low-level visual cortex function. The model consists of opponent color channels, wavelet transform, wavelet energy map, and contrast sensitivity function for extracting low-level image features and maximum approximation to the human visual system. The proposed model is evaluated several datasets, including MIT1003, MIT300, TORONTO, SID4VAM and UCF Sports dataset to explain its efficiency. The proposed model results are quantitatively and qualitatively compared to other state-of-the-art salience prediction models. Compared with the baseline model, our model achieved very good performance. Secondly, we also confirmed Fourier/Spectral inspired saliency prediction models has the best prediction scores compared to other start-of-the-art non-neural network and even deep neural network models on the simple image features saliency prediction. Finally, the model also can be applied to spatial-temporal saliency prediction and got better performance.


翻译:视觉关注是选择和理解外部冗余世界的最重要特征之一。 自然复杂场景, 包括更大的冗余和人类视觉, 无法同时处理所有信息, 因为信息瓶颈。 人类视觉系统主要侧重于场景的主要部分, 以减少输入的视觉冗余信息。 它通常被称为视觉关注预测或视觉显眼地图。 本文提出一个新的显著预测架构WESCSF, 受到人类低水平视觉皮层功能的启发。 模型由对等色彩频道、 波盘变、 波盘能量映射和对比感应敏感功能组成, 用于提取低级别图像特征和人类视觉系统的最大近似值。 提议的模型将评估几个数据集, 包括 MIT1003、 MIT300、 TORONTO、 SID4VAM 和 UCFC 体育数据集, 以解释其效率。 拟议的模型结果与其它低水平视觉显著的预测模型相比, 质和质和质 。 与基线模型相比, 我们的模型取得了非常好的业绩。 其次, 我们还确认, Fourier/ Spetral 受启发的显性显著的显微预测模型模型, 模型, 将最佳预测模型应用到其他高度网络的模型。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
0+阅读 · 2021年6月4日
Learning Discriminative Model Prediction for Tracking
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员