Epileptic seizure prediction has gained considerable interest in the computational Epilepsy research community. This paper presents a Machine Learning based method for epileptic seizure prediction which outperforms state-of-the art methods. We compute a probability for a given epoch, of being pre-ictal against interictal using the Random Forest classifier and introduce new concepts to enhance the robustness of the algorithm to false alarms. We assessed our method on 20 patients of the benchmark scalp EEG CHB-MIT dataset for a seizure prediction horizon (SPH) of 5 minutes and a seizure occurrence period (SOP) of 30 minutes. Our approach achieves a sensitivity of 82.07 % and a low false positive rate (FPR) of 0.0799 /h. We also tested our approach on intracranial EEG recordings.
翻译:癫痫发作预测在计算癫痫发作研究界引起了相当大的兴趣,本文介绍了一种基于机器学习的癫痫发作预测方法,该方法优于最先进的方法。我们计算了一个特定时代的概率,即使用随机森林分类器对间皮瘤进行预冰前测试,并引入了新概念,以加强算法对假警报的稳健性。我们评估了我们对20名基本头目EEEEG CHB-MIT数据集患者采用的方法,该数据库用于5分钟的癫痫发作预测和30分钟的缉获发生期。我们的方法达到了82.07%的敏感度和0.0799/h的低假阳率(FPR),我们还测试了我们关于内部 EEG记录的方法。