Continuous games have compact strategy sets and continuous utility functions. Such games can have a highly complicated structure of Nash equilibria. Algorithms and numerical methods for the equilibrium computation are known only for particular classes of continuous games such as two-person polynomial games or games with pure equilibria. This contribution focuses on the computation and approximation of a mixed strategy equilibrium for the whole class of multiplayer general-sum continuous games. We extend vastly the scope of applicability of the double oracle algorithm, which was initially designed and proved to converge only for two-person zero-sum games. Specifically, we propose an iterative strategy generation technique, which splits the original problem into the master problem with only a finite subset of strategies being considered, and the subproblem in which an oracle finds the best response of each player. This simple method is guaranteed to recover an approximate equilibrium in finitely many iterations. Further, we argue that the Wasserstein distance (the earth mover's distance) is the right metric on the space of mixed strategies for our purposes. Our main result is the convergence of this algorithm in the Wasserstein distance to an equilibrium of the original continuous game. The numerical experiments show the performance of our method on several examples of games appearing in the literature.
翻译:连续游戏有紧凑的策略和连续的实用功能。 这些游戏可以有一个非常复杂的 Nash 平衡结构。 计算平衡的算法和数字方法只为特定类别的连续游戏所知道, 例如双人多式游戏或纯平衡的游戏。 这一贡献侧重于计算和近似整个类多玩者普通和连续游戏的混合战略平衡。 我们广泛扩展了双或触角算法的适用范围, 它最初设计并证明只是为两个人零和游戏所趋同。 具体地说, 我们提议了一个迭代战略生成技术, 将最初的问题分成主要问题, 仅考虑一个有限的策略, 以及一个游戏找到每个玩家最佳反应的子问题。 这个简单方法可以保证在有限的多个游戏中恢复大致的平衡。 此外, 我们争辩说, 瓦塞斯坦距离( 地球移动器的距离) 是用于我们目的的混合策略空间的正确度量度。 我们的主要结果就是, 在瓦列斯特斯坦游戏的距离中, 这个算法会结合到我们数个游戏中, 显示我们游戏的原始游戏的游戏的平局。