We construct a space-time parallel method for solving parabolic partial differential equations by coupling the Parareal algorithm in time with overlapping domain decomposition in space. Reformulating the original Parareal algorithm as a variational method and implementing a finite element discretization in space enables an adjoint-based a posteriori error analysis to be performed. Through an appropriate choice of adjoint problems and residuals the error analysis distinguishes between errors arising due to the temporal and spatial discretizations, as well as between the errors arising due to incomplete Parareal iterations and incomplete iterations of the domain decomposition solver. We first develop an error analysis for the Parareal method applied to parabolic partial differential equations, and then refine this analysis to the case where the associated spatial problems are solved using overlapping domain decomposition. These constitute our Time Parallel Algorithm (TPA) and Space-Time Parallel Algorithm (STPA) respectively. Numerical experiments demonstrate the accuracy of the estimator for both algorithms and the iterations between distinct components of the error.


翻译:我们通过在时间上将Parareal算法与空间重叠的域分解分解组合,构建了解决抛物线部分差异方程式的时空平行方法。将最初的Parareal算法作为一种变异方法重新定位,并在空间中实施一个有限元素分解,这样就可以进行基于附带的附带错误分析。通过适当选择连接问题和剩余部分,错误分析区分了由于时间和空间分解引起的错误,以及由于域分解解解解解溶剂的不完全分解和不完全迭代造成的错误。我们首先对用于抛出部分差异方程式的Parareal方法进行了错误分析,然后将这一分析完善到使用重叠的域分解组合解决相关空间问题的情况下。这分别构成我们的时间平行 Algorithm (TPA) 和空间-时间平行Algorithm (STPA) 之间的错误。数字实验显示了两种算法的准确性以及错误的不同组成部分之间的迭代法。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
49+阅读 · 2021年6月30日
专知会员服务
76+阅读 · 2021年3月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年5月20日
Arxiv
3+阅读 · 2018年11月11日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
8+阅读 · 2018年1月30日
Arxiv
3+阅读 · 2017年12月1日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
49+阅读 · 2021年6月30日
专知会员服务
76+阅读 · 2021年3月16日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
8+阅读 · 2021年5月20日
Arxiv
3+阅读 · 2018年11月11日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
8+阅读 · 2018年1月30日
Arxiv
3+阅读 · 2017年12月1日
Arxiv
3+阅读 · 2015年5月16日
Top
微信扫码咨询专知VIP会员