We develop a novel unified randomized block-coordinate primal-dual algorithm to solve a class of nonsmooth constrained convex optimization problems, which covers different existing variants and model settings from the literature. We prove that our algorithm achieves optimal $\mathcal{O}(n/k)$ and $\mathcal{O}(n^2/k^2)$ convergence rates (up to a constant factor) in two cases: general convexity and strong convexity, respectively, where $k$ is the iteration counter and n is the number of block-coordinates. Our convergence rates are obtained through three criteria: primal objective residual and primal feasibility violation, dual objective residual, and primal-dual expected gap. Moreover, our rates for the primal problem are on the last iterate sequence. Our dual convergence guarantee requires additionally a Lipschitz continuity assumption. We specify our algorithm to handle two important special cases, where our rates are still applied. Finally, we verify our algorithm on two well-studied numerical examples and compare it with two existing methods. Our results show that the proposed method has encouraging performance on different experiments.
翻译:我们开发了一种新颖的统一随机的块状协调初等-二元算法,以解决一组非悬浮受限制的细形优化问题,它覆盖了现有不同的变式和文献中的模型设置。我们证明我们的算法实现了最佳的 $\ mathcal{O}(n/k) 美元和 $\ mathcal{O}(n2/k ⁇ 2) 和$\ mathcal{O}(n/k) 和 $\ mathcal{O}(n/k) 和 $\ mathcal{O}(n2/k ⁇ 2) 。 在两种情况中,我们开发了一种新颖的统一率(最高为一个不变系数 ) : 普通的粘合率和强的粘结率, 分别是 $k 和 n 是块坐标数 。 我们的趋和率是通过三个标准获得的趋同率: 初等目标残余和初等可行性违反, 双重目标剩余, 和初等预期的差距。此外, 我们的结果显示我们提出的方法鼓励不同表现的方法。