We develop a novel unified randomized block-coordinate primal-dual algorithm to solve a class of nonsmooth constrained convex optimization problems, which covers different existing variants and model settings from the literature. We prove that our algorithm achieves optimal $\mathcal{O}(n/k)$ and $\mathcal{O}(n^2/k^2)$ convergence rates (up to a constant factor) in two cases: general convexity and strong convexity, respectively, where $k$ is the iteration counter and n is the number of block-coordinates. Our convergence rates are obtained through three criteria: primal objective residual and primal feasibility violation, dual objective residual, and primal-dual expected gap. Moreover, our rates for the primal problem are on the last iterate sequence. Our dual convergence guarantee requires additionally a Lipschitz continuity assumption. We specify our algorithm to handle two important special cases, where our rates are still applied. Finally, we verify our algorithm on two well-studied numerical examples and compare it with two existing methods. Our results show that the proposed method has encouraging performance on different experiments.


翻译:我们开发了一种新颖的统一随机的块状协调初等-二元算法,以解决一组非悬浮受限制的细形优化问题,它覆盖了现有不同的变式和文献中的模型设置。我们证明我们的算法实现了最佳的 $\ mathcal{O}(n/k) 美元和 $\ mathcal{O}(n2/k ⁇ 2) 和$\ mathcal{O}(n/k) 和 $\ mathcal{O}(n/k) 和 $\ mathcal{O}(n2/k ⁇ 2) 。 在两种情况中,我们开发了一种新颖的统一率(最高为一个不变系数 ) : 普通的粘合率和强的粘结率, 分别是 $k 和 n 是块坐标数 。 我们的趋和率是通过三个标准获得的趋同率: 初等目标残余和初等可行性违反, 双重目标剩余, 和初等预期的差距。此外, 我们的结果显示我们提出的方法鼓励不同表现的方法。

0
下载
关闭预览

相关内容

可靠深度异常检测,34页ppt,Google Balaji Lakshminarayanan讲解
专知会员服务
14+阅读 · 2021年5月21日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
75+阅读 · 2020年6月8日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
220+阅读 · 2020年6月5日
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员