We propose the first non-trivial generic decoding algorithm for codes in the sum-rank metric. The new method combines ideas of well-known generic decoders in the Hamming and rank metric. For the same code parameters and number of errors, the new generic decoder has a larger expected complexity than the known generic decoders for the Hamming metric and smaller than the known rank-metric decoders. Furthermore, we give a formal hardness reduction, providing evidence that generic sum-rank decoding is computationally hard. As a by-product of the above, we solve some fundamental coding problems in the sum-rank metric: we give an algorithm to compute the exact size of a sphere of a given sum-rank radius, and also give an upper bound as a closed formula; and we study erasure decoding with respect to two different notions of support.
翻译:我们提出了第一个非三进制通用解码算法,用于计算标准中的代码。新的方法结合了哈姆明和等级指标中众所周知的通用解码器的想法。对于相同的代码参数和误差数量,新的通用解码器的预期复杂性大于已知的哈姆明标准通用解码器的复杂度,小于已知的等分码器的复杂度。此外,我们给出了一种正式的硬度减法,提供的证据表明普通和排序解码是计算上硬的。作为上述的副产品,我们解决了总盘度中一些基本的编码问题:我们给出了一种算法,以计算给定的超位半径范围的确切大小,并给出了一个封闭的公式的上限;我们研究了两种不同的支持概念的解码法。