Domain adaptation typically requires to access source domain data to utilize their distribution information for domain alignment with the target data. However, in many real-world scenarios, the source data may not be accessible during the model adaptation in the target domain due to privacy issue. This paper studies the practical yet challenging source-free unsupervised domain adaptation problem, in which only an existing source model and the unlabeled target data are available for model adaptation. We present a novel denoised pseudo-labeling method for this problem, which effectively makes use of the source model and unlabeled target data to promote model self-adaptation from pseudo labels. Importantly, considering that the pseudo labels generated from source model are inevitably noisy due to domain shift, we further introduce two complementary pixel-level and class-level denoising schemes with uncertainty estimation and prototype estimation to reduce noisy pseudo labels and select reliable ones to enhance the pseudo-labeling efficacy. Experimental results on cross-domain fundus image segmentation show that without using any source images or altering source training, our approach achieves comparable or even higher performance than state-of-the-art source-dependent unsupervised domain adaptation methods.
翻译:域适应通常需要访问源域数据,以便利用源域数据发布信息与目标数据保持一致。然而,在许多现实世界情景中,由于隐私问题,源数据可能无法在目标域模型调整期间获取。本文件研究实际而具有挑战性的源无源、不受监督的域适应问题,其中只有现有的源模型和未贴标签的目标数据可用于模型适应。我们为这一问题提出了一个新颖的取消名化伪标签方法,有效地利用源模型和未贴标签的目标数据促进假标签的模型自我适应。 重要的是,考虑到源模型产生的伪标签不可避免地因域转移而吵闹,我们进一步引入了两种具有不确定性估计和原型估计的辅助像素级和类级分解计划,以减少杂音假标签,并选择可靠数据来增强伪标签的功效。关于跨界基金图像分割的实验结果显示,如果不使用任何源图像或改变源培训,我们的方法就实现了比状态的源码、甚至更高的性、依赖源码的、不受监督的域适应方法。