Although average gain optimality is a commonly adopted performance measure in Markov Decision Processes (MDPs), it is often too asymptotic. Further incorporating measures of immediate losses leads to the hierarchy of bias optimalities, all the way up to Blackwell optimality. In this paper, we investigate the problem of identifying policies of such optimality orders. To that end, for each order, we construct a learning algorithm with vanishing probability of error. Furthermore, we characterize the class of MDPs for which identification algorithms can stop in finite time. That class corresponds to the MDPs with a unique Bellman optimal policy, and does not depend on the optimality order considered. Lastly, we provide a tractable stopping rule that when coupled to our learning algorithm triggers in finite time whenever it is possible to do so.
翻译:暂无翻译