Bayesian optimization (BO) is widely used to optimize black-box functions. It works by first building a surrogate for the objective and quantifying the uncertainty in that surrogate. It then decides where to sample by maximizing an acquisition function defined by the surrogate model. Prior approaches typically use randomly generated raw samples to initialize the acquisition function maximizer. However, this strategy is ill-suited for high-dimensional BO. Given the large regions of high posterior uncertainty in high dimensions, a randomly initialized acquisition function maximizer is likely to focus on areas with high posterior uncertainty, leading to overly exploring areas that offer little gain. This paper provides the first comprehensive empirical study to reveal the importance of the initialization phase of acquisition function maximization. It proposes a better initialization approach by employing multiple heuristic optimizers to leverage the knowledge of already evaluated samples to generate initial points to be explored by an acquisition function maximizer. We evaluate our approach on widely used synthetic test functions and real-world applications. Experimental results show that our techniques, while simple, can significantly enhance the standard BO and outperforms state-of-the-art high-dimensional BO techniques by a large margin in most test cases.
翻译:Bayesian 优化 (BO) 被广泛用于优化黑盒功能。 它首先为这个目标建立一个替代方, 并对替代方的不确定性进行量化。 它随后决定通过最大限度地增加代方模型定义的获取功能进行取样。 先前的方法通常使用随机生成的原始样本来初始化获取功能最大化。 但是, 这个战略不适合高维的BO。 鉴于高维的后方不确定性很大, 一个随机初始化的获取功能最大化器很可能侧重于后方不确定性高的地区, 导致过度探索产生微小收益的领域。 本文提供了第一次全面的实证研究, 以揭示获取功能最大化初始化阶段的重要性。 它提出一种更好的初始化方法, 使用多种超值优化器来利用已经评估过的样本的知识生成初始点, 以便由获取功能最大化来探索。 我们评估了我们广泛使用的合成测试功能和现实世界应用的方法。 实验结果显示, 我们的技术虽然简单, 能够大大加强标准BO, 并且能够大大超过最高级的测试案例 。