The goal of few-shot fine-grained image classification is to recognize rarely seen fine-grained objects in the query set, given only a few samples of this class in the support set. Previous works focus on learning discriminative image features from a limited number of training samples for distinguishing various fine-grained classes, but ignore one important fact that spatial alignment of the discriminative semantic features between the query image with arbitrary changes and the support image, is also critical for computing the semantic similarity between each support-query pair. In this work, we propose an object-aware long-short-range spatial alignment approach, which is composed of a foreground object feature enhancement (FOE) module, a long-range semantic correspondence (LSC) module and a short-range spatial manipulation (SSM) module. The FOE is developed to weaken background disturbance and encourage higher foreground object response. To address the problem of long-range object feature misalignment between support-query image pairs, the LSC is proposed to learn the transferable long-range semantic correspondence by a designed feature similarity metric. Further, the SSM module is developed to refine the transformed support feature after the long-range step to align short-range misaligned features (or local details) with the query features. Extensive experiments have been conducted on four benchmark datasets, and the results show superior performance over most state-of-the-art methods under both 1-shot and 5-shot classification scenarios.
翻译:微微细微图像分类的少数微小微细微图像分类的目的是要识别查询组中很少见到的精细细刻度对象, 因为在支持组中只有几个样本。 先前的工作重点是从数量有限的培训样本中学习区别各种细微类的有区别的有差别的图像特征, 但忽略了一个重要的事实, 即对查询图像与任意修改和支持图像之间的有区别的语义特征进行空间调整对于计算每对支持查询组之间的语义相似性也至关重要。 在这项工作中, 我们提议采用一个有目标觉知的长短距离空间校对方法, 由表面物体增强功能模块( FOE) 模块) 、 远程语义通信模块( LSC) 和短距离空间操纵模块( SSSSM) 进行空间调整, 以削弱背景扰动, 并鼓励对地面物体做出更高程度的反应。 为了解决支持- 支持组之间的长距离对象特征不匹配问题, 我们建议 LSC 采用一个具有可转移的长距离的长距离空间对应对应通信方法, 由一个设计好的地平面图像分析模型进行更精确的直径的图像分析, 在1号模型下, 演示模型下, 和直径对地标进行更精确的地面定位进行。