We propose a new simulation-based estimation method, adversarial estimation, for structural models. The estimator is formulated as the solution to a minimax problem between a generator (which generates synthetic observations using the structural model) and a discriminator (which classifies if an observation is synthetic). The discriminator maximizes the accuracy of its classification while the generator minimizes it. We show that, with a sufficiently rich discriminator, the adversarial estimator attains parametric efficiency under correct specification and the parametric rate under misspecification. We advocate the use of a neural network as a discriminator that can exploit adaptivity properties and attain fast rates of convergence. We apply our method to the elderly's saving decision model and show that our estimator uncovers the bequest motive as an important source of saving across the wealth distribution, not only for the rich.
翻译:我们为结构模型提出了一种新的基于模拟的估计方法,即对抗性估算。估计符是设计成解决产生者(利用结构模型生成合成观测)和歧视者(如果观察是合成的,则分类)之间小问题的办法。歧视者尽可能提高分类的准确性,而生成者则尽量减少分类的准确性。我们证明,如果存在足够丰富的歧视者,对抗性估计符在正确的规格和错误区分的参数率下达到了准对称效率。我们主张使用神经网络作为歧视者,利用适应性特性并实现快速趋同率。我们将我们的方法应用于老年人的储蓄决策模型,并表明我们的估计者发现遗赠动机是财富分配中的重要储蓄来源,而不仅仅是富人。