Physics-informed neural networks (PINNs) provide a powerful approach for solving partial differential equations (PDEs), but constructing a usable PINN remains labor-intensive and error-prone. Scientists must interpret problems as PDE formulations, design architectures and loss functions, and implement stable training pipelines. Existing large language model (LLM) based approaches address isolated steps such as code generation or architecture suggestion, but typically assume a formal PDE is already specified and therefore lack an end-to-end perspective. We present Lang-PINN, an LLM-driven multi-agent system that builds trainable PINNs directly from natural language task descriptions. Lang-PINN coordinates four complementary agents: a PDE Agent that parses task descriptions into symbolic PDEs, a PINN Agent that selects architectures, a Code Agent that generates modular implementations, and a Feedback Agent that executes and diagnoses errors for iterative refinement. This design transforms informal task statements into executable and verifiable PINN code. Experiments show that Lang-PINN achieves substantially lower errors and greater robustness than competitive baselines: mean squared error (MSE) is reduced by up to 3--5 orders of magnitude, end-to-end execution success improves by more than 50\%, and reduces time overhead by up to 74\%.
翻译:暂无翻译