In this paper we propose an algorithm for exact partitioning of high-order models. We define a general class of $m$-degree Homogeneous Polynomial Models, which subsumes several examples motivated from prior literature. Exact partitioning can be formulated as a tensor optimization problem. We relax this high-order combinatorial problem to a convex conic form problem. To this end, we carefully define the Carath\'eodory symmetric tensor cone, and show its convexity, and the convexity of its dual cone. This allows us to construct a primal-dual certificate to show that the solution of the convex relaxation is correct (equal to the unobserved true group assignment) and to analyze the statistical upper bound of exact partitioning.
翻译:在本文中,我们提出了精确分割高阶模型的算法。 我们定义了一个普通类别, 即 $m$- 度同质单质聚合模型, 它包含从先前文献中引申出的几个例子。 精确分割可以被写成一个 Exronor 优化问题 。 我们将这个高阶组合问题放松到 convex 二次曲线形式问题 。 为此, 我们仔细定义了 Carath\' 的对称色调色调, 并显示了其共性, 以及其双向锥体的共性 。 这让我们可以构建一个原始双轨证书, 以显示共振放松的解决方案是正确的( 等同于未观测到的真正组任务 ), 并分析精确分割的统计上限 。