We introduce a novel relaxation of combinatorial discrepancy called Gaussian discrepancy, whereby binary signings are replaced with correlated standard Gaussian random variables. This relaxation effectively reformulates an optimization problem over the Boolean hypercube into one over the space of correlation matrices. We show that Gaussian discrepancy is a tighter relaxation than the previously studied vector and spherical discrepancy problems, and we construct a fast online algorithm that achieves a version of the Banaszczyk bound for Gaussian discrepancy. This work also raises new questions such as the Koml\'{o}s conjecture for Gaussian discrepancy, which may shed light on classical discrepancy problems.


翻译:我们引入了一种叫高斯差异的新型组合差异的放松, 即二进制签名被相关标准高斯随机变量所取代。 这种放松有效地将波林超立方体的优化问题重新定位为关联矩阵空间的优化问题。 我们显示高斯差异比先前研究的矢量和球体差异问题更加宽松, 我们构建了一个快速的在线算法, 实现一个版本的Banaszzczyk, 用于解决高斯差异。 这项工作还提出了新的问题, 比如, Koml\ {o} 对高斯差异的预测, 这可能会揭示古典差异问题 。

0
下载
关闭预览

相关内容

专知会员服务
24+阅读 · 2021年6月17日
专知会员服务
52+阅读 · 2020年9月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月6日
Arxiv
0+阅读 · 2021年11月6日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
24+阅读 · 2021年6月17日
专知会员服务
52+阅读 · 2020年9月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员