We propose two multiscale comparisons of graphs using heat diffusion, allowing to compare graphs without node correspondence or even with different sizes. These multiscale comparisons lead to the definition of Lipschitz-continuous empirical processes indexed by a real parameter. The statistical properties of empirical means of such processes are studied in the general case. Under mild assumptions, we prove a functional Central Limit Theorem, as well as a Gaussian approximation with a rate depending only on the sample size. Once applied to our processes, these results allow to analyze data sets of pairs of graphs. More precisely, we are able to design consistent confidence bands around empirical means and consistent two-sample tests, using bootstrap methods. Their performances are evaluated by simulations on synthetic data sets.
翻译:我们建议对使用热扩散的图表进行两个多尺度的比较,以便能够比较图表,而没有节点对应,甚至不使用不同大小。这些多尺度的比较导致对Lipschitz持续的经验过程进行定义,用一个实际参数进行索引。在一般情况下研究这种过程的经验手段的统计特性。在温和假设下,我们证明我们有一个功能性的中央限制理论,以及一个仅根据抽样大小的速率的高斯近似值。这些结果一旦应用到我们的过程,就可以分析成对的图表数据集。更确切地说,我们能够围绕经验手段和一致的双模测试设计一致的信任带,使用靴套方法,通过合成数据集的模拟来评价它们的性能。