To draw real-world evidence about the comparative effectiveness of complex time-varying treatment regimens on patient survival, we develop a joint marginal structural proportional hazards model and novel weighting schemes in continuous time to account for time-varying confounding and censoring. Our methods formulate complex longitudinal treatments with multiple "start/stop" switches as the recurrent events with discontinuous intervals of treatment eligibility. We derive the weights in continuous time to handle a complex longitudinal dataset on its own terms, without the need to discretize or artificially align the measurement times. We further propose using machine learning models designed for censored survival data with time-varying covariates and the kernel function estimator of the baseline intensity to efficiently estimate the continuous-time weights. Our simulations demonstrate that the proposed methods provide better bias reduction and nominal coverage probability when analyzing observational longitudinal survival data with irregularly spaced time intervals, compared to conventional methods that require aligned measurement time points. We apply the proposed methods to a large-scale COVID-19 dataset to estimate the causal effects of several COVID-19 treatment strategies on in-hospital mortality or ICU admission, and provide new insights relative to findings from randomized trials.
翻译:为了获得关于复杂、时间变化的治疗疗法在患者生存方面的相对有效性的实际世界证据,我们制定了一种联合的边际结构成比例危害模型和新的加权计划,连续不断地考虑到时间变化的混乱和审查。我们的方法是制定复杂的纵向治疗,采用多重“启动/停止”开关作为重复事件,治疗资格不连续的间隔不连续。我们得出连续时间的权重,以便按照自己的条件处理复杂的纵向数据集,而不必分解或人为地调整测量时间。我们进一步提议使用机器学习模型,用时间变化的共变和内核为审查生存数据设计的机器学习模型和基准强度估计器来有效估计连续时间重量。我们的模拟表明,在以不固定的间距分析观察性活性数据时,拟议的方法提供了更好的偏差减少和名义覆盖概率,而传统的方法则需要统一的测量时间点。我们将拟议的方法应用于大规模COVID-19数据集,以估计若干COVID-19治疗战略对住院死亡率或ICU随机诊断结果产生的因果关系。