Return-to-baseline is an important method to impute missing values or unobserved potential outcomes when certain hypothetical strategies are used to handle intercurrent events in clinical trials. Current return-to-baseline approaches seen in literature and in practice inflate the variability of the "complete" dataset after imputation and lead to biased mean estimators {when the probability of missingness depends on the observed baseline and/or postbaseline intermediate outcomes}. In this article, we first provide a set of criteria a return-to-baseline imputation method should satisfy. Under this framework, we propose a novel return-to-baseline imputation method. Simulations show the completed data after the new imputation approach have the proper distribution, and the estimators based on the new imputation method outperform the traditional method in terms of both bias and variance, when missingness depends on the observed values. The new method can be implemented easily with the existing multiple imputation procedures in commonly used statistical packages.


翻译:在临床试验中,当使用某些假设战略处理周期间事件时,返回到基线是估算缺失值或未观察到的潜在结果的一个重要方法。在文献和实践中,目前的返回到基线方法扩大了估算后“完整”数据集的可变性,并导致偏差平均估计值(当缺失概率取决于观察到的基线和/或基线后中间结果时)。在本条中,我们首先提供一套标准,即返回到基线的估算方法应当满足。在这个框架内,我们提议一种新的返回到基线的估算方法。模拟显示在新的估算方法得到适当分布后完成的数据,基于新的估算方法的估算值在偏差和差异方面都超越了传统方法,而缺失取决于观察到的值。在常用的统计软件包中,新的方法可以很容易地应用。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月23日
Arxiv
32+阅读 · 2021年3月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员