As of December 2020, the COVID-19 pandemic has infected over 75 million people, making it the deadliest pandemic in modern history. This study develops a novel compartmental epidemiological model specific to the SARS-CoV-2 virus and analyzes the effect of common preventative measures such as testing, quarantine, social distancing, and vaccination. By accounting for the most prevalent interventions that have been enacted to minimize the spread of the virus, the model establishes a paramount foundation for future mathematical modeling of COVID-19 and other modern pandemics. Specifically, the model expands on the classic SIR model and introduces separate compartments for individuals who are in the incubation period, asymptomatic, tested-positive, quarantined, vaccinated, or deceased. It also accounts for variable infection, testing, and death rates. I first analyze the outbreak in Santa Clara County, California, and later generalize the findings. The results show that, although all preventative measures reduce the spread of COVID-19, quarantine and social distancing mandates reduce the infection rate and subsequently are the most effective policies, followed by vaccine distribution and, finally, public testing. Thus, governments should concentrate resources on enforcing quarantine and social distancing policies. In addition, I find mathematical proof that the relatively high asymptomatic rate and long incubation period are driving factors of COVID-19's rapid spread.


翻译:截至2020年12月,COVID-19大流行已经感染了7 500多万人,使其成为现代史上最致命的流行病。这项研究开发了SARS-COV-2病毒的新颖的零散流行病学模型,分析了测试、检疫、社会偏移和接种等共同预防措施的影响。我首先分析了在加利福尼亚圣克拉拉县爆发的疾病,后来又概括了调查结果。结果显示,尽管所有预防性措施都减少了COVID-19和其他现代流行病的传播,但检疫和社会偏移任务减少了COVID-19的传播。该模型在经典SIR模型上扩展了感染率,并为处于孵化期、无症状、检测呈阳性、检疫、接种或死亡的个人引入了单独的区隔板。此外,该模型还说明了不同感染、检测和死亡率。我首先分析了在加利福尼亚圣克拉拉县爆发的疫情,后来又将调查结果概括化。结果显示,尽管所有预防性措施都减少了COVID-19的传播,但检疫和社会偏移任务降低了感染率,随后是最有效的政策,其次是疫苗的分发,最后是公共测试。因此,政府应当将高数学率集中用于执行长期的检疫和数学检验。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月21日
Invasion Dynamics in the Biased Voter Process
Arxiv
0+阅读 · 2022年1月20日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员