We resolve the ill-posed alpha matting problem from a completely different perspective. Given an input portrait image, instead of estimating the corresponding alpha matte, we focus on the other end, to subtly enhance this input so that the alpha matte can be easily estimated by any existing matting models. This is accomplished by exploring the latent space of GAN models. It is demonstrated that interpretable directions can be found in the latent space and they correspond to semantic image transformations. We further explore this property in alpha matting. Particularly, we invert an input portrait into the latent code of StyleGAN, and our aim is to discover whether there is an enhanced version in the latent space which is more compatible with a reference matting model. We optimize multi-scale latent vectors in the latent spaces under four tailored losses, ensuring matting-specificity and subtle modifications on the portrait. We demonstrate that the proposed method can refine real portrait images for arbitrary matting models, boosting the performance of automatic alpha matting by a large margin. In addition, we leverage the generative property of StyleGAN, and propose to generate enhanced portrait data which can be treated as the pseudo GT. It addresses the problem of expensive alpha matte annotation, further augmenting the matting performance of existing models. Code is available at~\url{https://github.com/cnnlstm/StyleGAN_Matting}.


翻译:我们从完全不同的角度解决了错误的阿尔法交配问题。 有了输入的肖像,而不是估算相应的阿尔法配方, 我们聚焦于另一端, 基底加强这种输入, 以便让任何现有的配方模型能够容易地估算阿尔法配方。 这是通过探索 GAN 模型的潜在空间而实现的。 证明在潜藏空间中可以找到可解释的方向, 它们与语义图像转换相对应 。 我们进一步在阿尔法配方中探索这一属性 。 特别是, 我们将一个输入的肖像转换到StyleGAN 潜在代码中, 我们的目标是发现在潜在空间中是否有一个更符合参考配方模型的强化版本。 我们优化了在四个定制损失下的潜在空间的多尺度潜在矢量,确保了配方特性和对肖像的细微修改。 我们证明拟议的方法可以改进任意配方模型的真实肖像图像, 提高自动配方图像的性能。 此外, 我们利用StyleGAN 的基因属性, 并提议生成一个更高级的肖像数据, 能够进一步处理现有的制式GTal_ GT.

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2021年8月5日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员