Data labeling is a time intensive process. As such, many data scientists use various tools to aid in the data generation and labeling process. While these tools help automate labeling, many still require user interaction throughout the process. Additionally, most target only a few network frameworks. Any researchers exploring multiple frameworks must find additional tools orwrite conversion scripts. This paper presents an automated tool for generating synthetic data in arbitrary network formats. It uses Robot Operating System (ROS) and Gazebo, which are common tools in the robotics community. Through ROS paradigms, it allows extensive user customization of the simulation environment and data generation process. Additionally, a plugin-like framework allows the development of arbitrary data format writers without the need to change the main body of code. Using this tool, the authors were able to generate an arbitrarily large image dataset for three unique training formats using approximately 15 min of user setup time and a variable amount of hands-off run time, depending on the dataset size. The source code for this data generation tool is available at https://github.com/Navy-RISE-Lab/nn_data_collection
翻译:数据标签是一个时间密集的过程。 因此, 许多数据科学家使用各种工具来帮助数据生成和标签过程。 虽然这些工具有助于标签自动化, 但许多工具仍需要在整个过程中进行用户互动。 此外, 多数目标仅针对几个网络框架。 任何探索多个框架的研究人员必须找到额外的工具或文字转换脚本。 本文提供了一个自动工具, 以任意网络格式生成合成数据。 它使用机器人操作系统(ROS) 和 Gazebo, 它们是机器人社区的共同工具。 它通过 ROS 模式, 允许广泛用户定制模拟环境和数据生成过程。 此外, 类似插件的框架允许开发任意的数据格式作者, 无需更改主要代码体。 使用这个工具, 作者能够利用大约15分钟的用户设定时间和可变的手动运行时间, 取决于数据集大小。 此数据生成工具的源代码可在 https://github.com/ Navy-RIS-Lab/nn_ data_ minication_ 上查阅。