Quantum computers promise to enhance machine learning for practical applications. Quantum machine learning for real-world data has to handle extensive amounts of high-dimensional data. However, conventional methods for measuring quantum kernels are impractical for large datasets as they scale with the square of the dataset size. Here, we measure quantum kernels using randomized measurements to gain a quadratic speedup in computation time and quickly process large datasets. Further, we efficiently encode high-dimensional data into quantum computers with the number of features scaling linearly with the circuit depth. The encoding is characterized by the quantum Fisher information metric and is related to the radial basis function kernel. We demonstrate the advantages and speedups of our methods by classifying images with the IBM quantum computer. Our approach is exceptionally robust to noise via a complementary error mitigation scheme. Using currently available quantum computers, the MNIST database can be processed within 220 hours instead of 10 years which opens up industrial applications of quantum machine learning.
翻译:量子计算机承诺加强实际应用的机器学习。 量子计算机学习真实世界数据必须处理大量的高维数据。 然而, 测量量子内核的传统方法对大型数据集来说并不切实际, 因为它们与数据集大小的正方形相乘。 在这里, 我们用随机测量测量来测量量子内核, 在计算时间和快速处理大型数据集方面获得二次加速。 此外, 我们有效地将高维数据编码到量子计算机中, 其特征是与电路深度成线缩缩放的功能数量。 编码的特征是量子渔业信息量度, 与辐射基函数内核相关。 我们通过对IBM量子计算机进行分类来展示我们方法的优势和加速。 我们的方法通过一个互补的减少误差计划对噪音非常有力。 利用现有的量子计算机, MNIST 数据库可以在220小时内处理, 而不是在10年内开启量子机器学习的工业应用。