We resolve an open problem posed by Joswig et al. by providing an $\tilde{O}(N)$ time, $O(\log^2(N))$-factor approximation algorithm for the min-Morse unmatched problem (MMUP) Let $\Lambda$ be the no. of critical cells of the optimal discrete Morse function and $N$ be the total no. of cells of a regular cell complex K. The goal of MMUP is to find $\Lambda$ for a given complex K. To begin with, we apply an approx. preserving graph reduction on MMUP to obtain a new problem namely the min-partial order problem (min-POP)(a strict generalization of the min-feedback arc set problem). The reduction involves introduction of rigid edges which are edges that demand strict inclusion in output solution. To solve min-POP, we use the Leighton- Rao divide-&-conquer paradigm that provides solutions to SDP-formulated instances of min-directed balanced cut with rigid edges (min-DBCRE). Our first algorithm for min-DBCRE extends Agarwal et al.'s rounding procedure for digraph formulation of ARV-algorithm to handle rigid edges. Our second algorithm to solve min-DBCRE SDP, adapts Arora et al.'s primal dual MWUM. In terms of applications, under the mild assumption1 of the size of topological features being significantly smaller compared to the size of the complex, we obtain an (a) $\tilde{O}(N)$ algorithm for computing homology groups $H_i(K,A)$ of a simplicial complex K, (where A is an arbitrary Abelian group.) (b) an $\tilde{O}(N^2)$ algorithm for computing persistent homology and (c) an $\tilde{O}(N)$ algorithm for computing the optimal discrete Morse-Witten function compatible with input scalar function as simple consequences of our approximation algorithm for MMUP thereby giving us the best known complexity bounds for each of these applications under the aforementioned assumption. Such an assumption is realistic in applied settings, and often a characteristic of modern massive datasets.


翻译:我们通过提供 $\ tilde{ O} (N) 时间, $(\ log2 (N) ) 来解决由 Joswig 等人 构成的开放问题。 我们通过提供 $\ tilde{ O} (N) 时间, $(\ log2 (N) ) 美元(美元) 用于 min- morse (MMUP) 问题, $(Lambda$) 的开放问题。 美元(美元) 是 最佳离散机 Morse 函数的关键单元格, 美元(美元) 是常规 K- Rao- contal 模式, 我们首先要找到 美元( 美元) 美元( 美元), 我们首先要用 美元( 美元) 美元( 美元) 美元( 美元) 的平价( 美元) 的平面( MMM) 的平面( 平面) 的平面( 平面) 的平面) 的平面( 亚数( 平面) 平面) 将S- dal- dal- dal- dal- 平面( 平面) 平面( 将 Sqol- dal- dal- dal) 平面) 将 Sal- dal- dro) 平面) 的 的平面( K.

0
下载
关闭预览

相关内容

专知会员服务
83+阅读 · 2020年12月5日
专知会员服务
52+阅读 · 2020年9月7日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关VIP内容
专知会员服务
83+阅读 · 2020年12月5日
专知会员服务
52+阅读 · 2020年9月7日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员