Spaceborne synthetic aperture radar (SAR) can provide accurate images of the ocean surface roughness day-or-night in nearly all weather conditions, being an unique asset for many geophysical applications. Considering the huge amount of data daily acquired by satellites, automated techniques for physical features extraction are needed. Even if supervised deep learning methods attain state-of-the-art results, they require great amount of labeled data, which are difficult and excessively expensive to acquire for ocean SAR imagery. To this end, we use the subaperture decomposition (SD) algorithm to enhance the unsupervised learning retrieval on the ocean surface, empowering ocean researchers to search into large ocean databases. We empirically prove that SD improve the retrieval precision with over 20% for an unsupervised transformer auto-encoder network. Moreover, we show that SD brings important performance boost when Doppler centroid images are used as input data, leading the way to new unsupervised physics guided retrieval algorithms.
翻译:空间载人合成孔径雷达(SAR)可以在几乎所有天气条件下提供海洋表面粗糙日夜的准确图像,这是许多地球物理应用的一个独特资产。考虑到卫星每天获得的大量数据,需要物理特征提取自动化技术。即使受监督的深层学习方法达到最新结果,它们也需要大量标签数据,而为海洋合成孔径雷达图像获取这些数据既困难又过于昂贵。为此,我们使用子孔径分解算法(SD)加强海洋表面不受监督的学习检索,使海洋研究人员能够搜索大型海洋数据库。我们从经验上证明,SD提高了一个不受监督的变压器自动编码网络的检索精确度,达到20%以上。此外,我们还表明,当多普勒克机器人图像被用作输入数据时,SD带来重要的性能提升,从而导致新的不受监督的物理辅助检索算法。