This paper introduces a neural network approach for fitting the Lee-Carter and the Poisson Lee-Carter model on multiple populations. We develop some neural networks that replicate the structure of the individual LC models and allow their joint fitting by analysing the mortality data of all the considered populations simultaneously. The neural network architecture is specifically designed to calibrate each individual model using all available information instead of using a population-specific subset of data as in the traditional estimation schemes. A large set of numerical experiments performed on all the countries of the Human Mortality Database (HMD) shows the effectiveness of our approach. In particular, the resulting parameter estimates appear smooth and less sensitive to the random fluctuations often present in the mortality rates' data, especially for low-population countries. In addition, the forecasting performance results significantly improved as well.


翻译:本文件介绍了安装Lee-Carter和Poisson Lee-Carter多人口模型的神经网络方法,我们开发了一些复制单个LC模型结构的神经网络,通过同时分析所有被考虑人群的死亡率数据,使其合用。神经网络结构具体设计的目的是利用所有现有信息来校准每个个人模型,而不是像传统估算计划那样使用特定人群的一组数据。在人类死亡数据库(HMD)的所有国家进行的一大批数字实验显示了我们的方法的有效性。特别是,由此得出的参数估计数似乎很顺畅,对死亡率数据中经常出现的随机波动不太敏感,特别是对人口较少的国家而言。此外,预测结果也大为改善。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
最新《Transformers模型》教程,64页ppt
专知会员服务
314+阅读 · 2020年11月26日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
最新《Transformers模型》教程,64页ppt
专知会员服务
314+阅读 · 2020年11月26日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员