Forecasting the dynamics of large complex networks from previous time-series data is important in a wide range of contexts. Here we present a machine learning scheme for this task using a parallel architecture that mimics the topology of the network of interest. We demonstrate the utility and scalability of our method implemented using reservoir computing on a chaotic network of oscillators. Two levels of prior knowledge are considered: (i) the network links are known; and (ii) the network links are unknown and inferred via a data-driven approach to approximately optimize prediction.
翻译:从以往的时间序列数据中预测大型复杂网络的动态,在多种情况下都很重要。 我们在此展示一个用于这项任务的机器学习计划, 使用一个平行的结构, 模仿感兴趣的网络的地形。 我们展示了我们使用储油层计算在混乱的振荡器网络上所实施的方法的实用性和可扩展性。 之前的两种知识水平被考虑:(一) 网络链接为人所知;(二) 网络链接是未知的,并且通过数据驱动的办法来推断,以大致优化预测。