We introduce DeepIR, a new thermal image processing framework that combines physically accurate sensor modeling with deep network-based image representation. Our key enabling observations are that the images captured by thermal sensors can be factored into slowly changing, scene-independent sensor non-uniformities (that can be accurately modeled using physics) and a scene-specific radiance flux (that is well-represented using a deep network-based regularizer). DeepIR requires neither training data nor periodic ground-truth calibration with a known black body target--making it well suited for practical computer vision tasks. We demonstrate the power of going DeepIR by developing new denoising and super-resolution algorithms that exploit multiple images of the scene captured with camera jitter. Simulated and real data experiments demonstrate that DeepIR can perform high-quality non-uniformity correction with as few as three images, achieving a 10dB PSNR improvement over competing approaches.
翻译:我们引入了一个新的热图像处理框架DeepIR, 这个框架将物理精确传感器模型与深网络图像表示法相结合。 我们关键的扶持性观测是,热传感器所捕捉到的图像可以被考虑进缓慢变化、视景独立的传感器非一致性(可以用物理进行精确模型)和特定场景的弧度通量( 使用深网络定律进行充分表述 ) 。 深度IR既不需要培训数据,也不需要定期地对地真真真真真真假进行校准, 使用已知的黑体定标进行定期地真真真真真真真真真的校准, 使它非常适合实际的计算机视觉任务 。 我们通过开发新的分解和超分辨率算法, 利用摄像器快速捕捉到的场多幅图像, 模拟和真实的数据实验表明, DepIR 能够用三张图像进行高质量的非统一性校正, 实现10dB PSNR的改进, 而不是相互竞争的方法。