We consider the problem of fairly allocating items to a set of individuals, when the items are arriving online. A central solution concept in fair allocation is competitive equilibrium: every individual is endowed with a budget of faux currency, and the resulting competitive equilibrium is used to allocate. For the online fair allocation context, the PACE algorithm of Gao et al. [2021] leverages the dual averaging algorithm to approximate competitive equilibria. The authors show that, when items arrive i.i.d, the algorithm asymptotically achieves the fairness and efficiency guarantees of the offline competitive equilibrium allocation. However, real-world data is typically not stationary. One could instead model the data as adversarial, but this is often too pessimistic in practice. Motivated by this consideration, we study an online fair allocation setting with nonstationary item arrivals. To address this setting, we first develop new online learning results for the dual averaging algorithm under nonstationary input models. We show that the dual averaging iterates converge in mean square to both the underlying optimal solution of the ``true'' stochastic optimization problem as well as the ``hindsight'' optimal solution of the finite-sum problem given by the sample path. Our results apply to several nonstationary input models: adversarial corruption, ergodic input, and block-independent (including periodic) input. Here, the bound on the mean square error depends on a nonstationarity measure of the input. We recover the classical bound when the input data is i.i.d. We then show that our dual averaging results imply that the PACE algorithm for online fair allocation simultaneously achieves ``best of both worlds'' guarantees against any of these input models. Finally, we conduct numerical experiments which show strong empirical performance against nonstationary inputs.
翻译:当项目到达在线时,我们考虑将项目公平分配给一组个人的问题。公平分配的中央解决方案概念是竞争性平衡:每个人都拥有折合货币的预算,因此产生的竞争性平衡被用来分配。对于在线公平分配环境,加奥等人的计算机设备设备计算法[2021年]利用双均算法来估计竞争性平衡。作者们显示,当项目到达i.d.d时,算法即实现了离线竞争性均衡分配的公平性能和效率保障。然而,现实世界数据通常不是固定的。一个人可以将数据作为对称数据分配的模型,但在实践中这往往过于悲观。我们受此考虑的驱使,我们研究一个在线公平分配的设置,使用非静止项目到达。为了应对这一背景,我们首先为非静止投入模式下的双均值算法开发新的在线学习结果。我们发现,双均值的偏向正正比值与正正正正正值的双向正比值的双向,而正值的正值的正值是正比值的正比值最佳解决方案。我们正值的正值最正值最接近于正值的正值的正值优化的正值优化的对值优化的算法优化精确优化的计算优化的算优化的算值优化的算值优化的算算算算算值,, 将值的算值的算算值的算值的算值的算值的算算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的计算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值将值的算值的算值的算值将结果,,,, 将值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的计算值的算值的算值的算值的计算值的计算值的计算值的计算值的计算值的计算值的计算值的计算值的计算值的计算