We consider the problem of fairly allocating items to a set of individuals, when the items are arriving online. A central solution concept in fair allocation is competitive equilibrium: every individual is endowed with a budget of faux currency, and the resulting competitive equilibrium is used to allocate. For the online fair allocation context, the PACE algorithm of Gao et al. [2021] leverages the dual averaging algorithm to approximate competitive equilibria. The authors show that, when items arrive i.i.d, the algorithm asymptotically achieves the fairness and efficiency guarantees of the offline competitive equilibrium allocation. However, real-world data is typically not stationary. One could instead model the data as adversarial, but this is often too pessimistic in practice. Motivated by this consideration, we study an online fair allocation setting with nonstationary item arrivals. To address this setting, we first develop new online learning results for the dual averaging algorithm under nonstationary input models. We show that the dual averaging iterates converge in mean square to both the underlying optimal solution of the ``true'' stochastic optimization problem as well as the ``hindsight'' optimal solution of the finite-sum problem given by the sample path. Our results apply to several nonstationary input models: adversarial corruption, ergodic input, and block-independent (including periodic) input. Here, the bound on the mean square error depends on a nonstationarity measure of the input. We recover the classical bound when the input data is i.i.d. We then show that our dual averaging results imply that the PACE algorithm for online fair allocation simultaneously achieves ``best of both worlds'' guarantees against any of these input models. Finally, we conduct numerical experiments which show strong empirical performance against nonstationary inputs.


翻译:当项目到达在线时,我们考虑将项目公平分配给一组个人的问题。公平分配的中央解决方案概念是竞争性平衡:每个人都拥有折合货币的预算,因此产生的竞争性平衡被用来分配。对于在线公平分配环境,加奥等人的计算机设备设备计算法[2021年]利用双均算法来估计竞争性平衡。作者们显示,当项目到达i.d.d时,算法即实现了离线竞争性均衡分配的公平性能和效率保障。然而,现实世界数据通常不是固定的。一个人可以将数据作为对称数据分配的模型,但在实践中这往往过于悲观。我们受此考虑的驱使,我们研究一个在线公平分配的设置,使用非静止项目到达。为了应对这一背景,我们首先为非静止投入模式下的双均值算法开发新的在线学习结果。我们发现,双均值的偏向正正比值与正正正正正值的双向正比值的双向,而正值的正值的正值是正比值的正比值最佳解决方案。我们正值的正值最正值最接近于正值的正值的正值优化的正值优化的对值优化的算法优化精确优化的计算优化的算优化的算值优化的算值优化的算算算算算值,, 将值的算值的算算值的算值的算值的算值的算算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的计算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值将值的算值的算值的算值将结果,,,, 将值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的算值的计算值的算值的算值的算值的计算值的计算值的计算值的计算值的计算值的计算值的计算值的计算值的计算值的计算

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员