Optimizing the input probability distribution of a discrete-time channel is a standard step in the information-theoretic analysis of digital communication systems. Nevertheless, many practical communication systems transmit uniformly and independently distributed symbols drawn from regular constellation sets. The introduction of the probabilistic amplitude shaping architecture has renewed interest in using optimized probability distributions, i.e., probabilistic shaping. Traditionally, probabilistic shaping has been employed to reduce the transmit power required for a given information rate over additive noise channels. While this translates into substantive performance gains for optical fiber communication systems, the interaction of shaping and fiber nonlinearity has posed intriguing questions. At first glance, probabilistic shaping seems to exacerbate nonlinear interference noise (NLIN) due to larger higher-order standardized moments. Therefore, the optimization of shaping distributions must differ from those used for linear channels. Secondly, finite-length effects related to the memory of the nonlinear fiber channel have been observed. This suggests that the marginal input-symbol distribution is not the only consideration. This paper provides a tutorial-style discussion of probabilistic shaping for optical fiber communication. Since the distinguishing property of the channel is the signal-dependent NLIN, we speak of probabilistic shaping for nonlinearity tolerance. Our analysis builds on the first-order time-domain perturbation approximation of the nonlinear fiber channel and revisits the notion of linear and nonlinear shaping gain. We largely focus on probabilistic amplitude shaping with popular shaping methods. The concept of shaping via sequence selection is given special consideration, as it inherently optimizes a multivariate distribution for shaped constellations.


翻译:暂无翻译

1
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
149+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
32+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2023年8月28日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
31+阅读 · 2021年6月30日
Adaptive Synthetic Characters for Military Training
Arxiv
49+阅读 · 2021年1月6日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
11+阅读 · 2023年8月28日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
31+阅读 · 2021年6月30日
Adaptive Synthetic Characters for Military Training
Arxiv
49+阅读 · 2021年1月6日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
15+阅读 · 2018年2月4日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员