One fundamental challenge in building an instance segmentation model for a large number of classes in complex scenes is the lack of training examples, especially for rare objects. In this paper, we explore the possibility to increase the training examples without laborious data collection and annotation. We find that an abundance of instance segments can potentially be obtained freely from object-centric images, according to two insights: (i) an object-centric image usually contains one salient object in a simple background; (ii) objects from the same class often share similar appearances or similar contrasts to the background. Motivated by these insights, we propose a simple and scalable framework FreeSeg for extracting and leveraging these "free" object foreground segments to facilitate model training in long-tailed instance segmentation. Concretely, we investigate the similarity among object-centric images of the same class to propose candidate segments of foreground instances, followed by a novel ranking of segment quality. The resulting high-quality object segments can then be used to augment the existing long-tailed datasets, e.g., by copying and pasting the segments onto the original training images. Extensive experiments show that FreeSeg yields substantial improvements on top of strong baselines and achieves state-of-the-art accuracy for segmenting rare object categories.
翻译:在复杂的场景中,为大量班级建立例分解模型的基本挑战之一是缺乏培训实例,特别是稀有物品。在本文中,我们探讨是否可能增加培训实例,而没有艰苦的数据收集和注解。我们发现,根据两个洞察力,可以从以物体为中心的图像中自由获取大量实例部分:(一) 以物体为中心的图像通常包含一个简单背景中的突出对象;(二) 同一类的物体通常与背景有相似的外观或类似的对比。根据这些洞察力,我们提议一个简单和可扩展的框架FreeSeg,用于提取和利用这些“免费”的前表层物体,以便利在长尾分解中进行示范培训。具体地说,我们调查同一类的以物体为中心的图像的相似性,以提出背景情景的候选部分,然后对分级进行新的排序。由此产生的高品质对象部分随后可用于增加现有的长尾数据集,例如,通过复制和粘贴这些“免费”的面板块来提取和利用这些“免费”的前层物体,从而实现原始培训图像的精度的精度。