Assessing learners in ill-defined domains, such as scenario-based human tutoring training, is an area of limited research. Equity training requires a nuanced understanding of context, but do contemporary large language models (LLMs) have a knowledge base that can navigate these nuances? Legacy transformer models like BERT, in contrast, have less real-world knowledge but can be more easily fine-tuned than commercial LLMs. Here, we study whether fine-tuning BERT on human annotations outperforms state-of-the-art LLMs (GPT-4o and GPT-4-Turbo) with few-shot prompting and instruction. We evaluate performance on four prediction tasks involving generating and explaining open-ended responses in advocacy-focused training lessons in a higher education student population learning to become middle school tutors. Leveraging a dataset of 243 human-annotated open responses from tutor training lessons, we find that BERT demonstrates superior performance using an offline fine-tuning approach, which is more resource-efficient than commercial GPT models. We conclude that contemporary GPT models may not adequately capture nuanced response patterns, especially in complex tasks requiring explanation. This work advances the understanding of AI-driven learner evaluation under the lens of fine-tuning versus few-shot prompting on the nuanced task of equity training, contributing to more effective training solutions and assisting practitioners in choosing adequate assessment methods.
翻译:暂无翻译