In this paper, we first study the fundamental limit of clustering networks when a multi-layer network is present. Under the mixture multi-layer stochastic block model (MMSBM), we show that the minimax optimal network clustering error rate, which takes an exponential form and is characterized by the Renyi divergence between the edge probability distributions of the component networks. We propose a novel two-stage network clustering method including a tensor-based initialization algorithm involving both node and sample splitting and a refinement procedure by likelihood-based Lloyd algorithm. Network clustering must be accompanied by node community detection. Our proposed algorithm achieves the minimax optimal network clustering error rate and allows extreme network sparsity under MMSBM. Numerical simulations and real data experiments both validate that our method outperforms existing methods. Oftentimes, the edges of networks carry count-type weights. We then extend our methodology and analysis framework to study the minimax optimal clustering error rate for mixture of discrete distributions including Binomial, Poisson, and multi-layer Poisson networks. The minimax optimal clustering error rates in these discrete mixtures all take the same exponential form characterized by the Renyi divergences. These optimal clustering error rates in discrete mixtures can also be achieved by our proposed two-stage clustering algorithm.
翻译:暂无翻译