Late-life depression (LLD) is a highly prevalent mood disorder occurring in older adults and is frequently accompanied by cognitive impairment (CI). Studies have shown that LLD may increase the risk of Alzheimer's disease (AD). However, the heterogeneity of presentation of geriatric depression suggests that multiple biological mechanisms may underlie it. Current biological research on LLD progression incorporates machine learning that combines neuroimaging data with clinical observations. There are few studies on incident cognitive diagnostic outcomes in LLD based on structural MRI (sMRI). In this paper, we describe the development of a hybrid representation learning (HRL) framework for predicting cognitive diagnosis over 5 years based on T1-weighted sMRI data. Specifically, we first extract prediction-oriented MRI features via a deep neural network, and then integrate them with handcrafted MRI features via a Transformer encoder for cognitive diagnosis prediction. Two tasks are investigated in this work, including (1) identifying cognitively normal subjects with LLD and never-depressed older healthy subjects, and (2) identifying LLD subjects who developed CI (or even AD) and those who stayed cognitively normal over five years. To the best of our knowledge, this is among the first attempts to study the complex heterogeneous progression of LLD based on task-oriented and handcrafted MRI features. We validate the proposed HRL on 294 subjects with T1-weighted MRIs from two clinically harmonized studies. Experimental results suggest that the HRL outperforms several classical machine learning and state-of-the-art deep learning methods in LLD identification and prediction tasks.
翻译:晚期抑郁症(LLD)是一种在老年人中流行的高度流行的情绪障碍,经常伴有认知障碍(CI)。研究显示,LLD可能会增加阿尔茨海默氏氏病(AD)的风险。然而,老年抑郁症(AD)的呈现方式的异质性表明,它可能具有多种生物机制。目前LLD进展的生物研究包含将神经成像数据与临床观察相结合的机器学习。在结构MRI(sMRI)的基础上,LLLD对事件认知诊断结果的研究很少。在本文中,我们描述了根据T1加权的SMRI数据,为预测5年的认知诊断诊断诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性诊断性