Previous investigations into creative and innovation networks have suggested that innovations often occurs at the boundary between the network's core and periphery. In this work, we investigate the effect of global core-periphery network structure on the speed and quality of cultural innovation. Drawing on differing notions of core-periphery structure from [arXiv:1808.07801] and [doi:10.1016/S0378-8733(99)00019-2], we distinguish decentralized core-periphery, centralized core-periphery, and affinity network structure. We generate networks of these three classes from stochastic block models (SBMs), and use them to run an agent-based model (ABM) of collective cultural innovation, in which agents can only directly interact with their network neighbors. In order to discover the highest-scoring innovation, agents must discover and combine the highest innovations from two completely parallel technology trees. We find that decentralized core-periphery networks outperform the others by finding the final crossover innovation more quickly on average. We hypothesize that decentralized core-periphery network structure accelerates collective problem-solving by shielding peripheral nodes from the local optima known by the core community at any given time. We then build upon the "Two Truths" hypothesis regarding community structure in spectral graph embeddings, first articulated in [arXiv:1808.07801], which suggests that the adjacency spectral embedding (ASE) captures core-periphery structure, while the Laplacian spectral embedding (LSE) captures affinity. We find that, for core-periphery networks, ASE-based resampling best recreates networks with similar performance on the innovation SBM, compared to LSE-based resampling. Since the Two Truths hypothesis suggests that ASE captures core-periphery structure, this result further supports our hypothesis.


翻译:先前对创新和创新网络的调查显示,创新通常发生在网络核心和边缘之间的边界。 在这项工作中,我们调查了全球核心外球网络结构对文化创新的速度和质量的影响。 利用[ arXiv: 1808. 7801] 和[ doi: 10.1016/ S0378-8733(9900019-2) 的核心外观、 中央核心外观和近距离网络结构之间的界限。 我们从随机区块模型(SBMS)中生成了这三种类别的网络网络, 并使用它们运行基于集体文化创新的模型(ABM), 使代理人只能直接与网络邻居进行互动。 为了发现最高层外观的创新, 代理人必须发现并结合两个完全平行的技术树。 我们发现, 分散的核心外观网络比其他网络更接近于基于最终的内脏数据创新。 我们假设的是, 将核心的内脏网络从一个分散的内脏网络网络变成一个组织内部内部网络, 将一个我们所了解的内脏结构 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员