When receiving machine learning services from the cloud, the provider does not need to receive all features; in fact, only a subset of the features are necessary for the target prediction task. Discerning this subset is the key problem of this work. We formulate this problem as a gradient-based perturbation maximization method that discovers this subset in the input feature space with respect to the functionality of the prediction model used by the provider. After identifying the subset, our framework, Cloak, suppresses the rest of the features using utility-preserving constant values that are discovered through a separate gradient-based optimization process. We show that Cloak does not necessarily require collaboration from the service provider beyond its normal service, and can be applied in scenarios where we only have black-box access to the service provider's model. We theoretically guarantee that Cloak's optimizations reduce the upper bound of the Mutual Information (MI) between the data and the sifted representations that are sent out. Experimental results show that Cloak reduces the mutual information between the input and the sifted representations by 85.01% with only a negligible reduction in utility (1.42%). In addition, we show that Cloak greatly diminishes adversaries' ability to learn and infer non-conducive features.
翻译:当从云中接收机器学习服务时,提供者不需要接收所有功能; 事实上, 目标预测任务只需要有一组特性即可接收所有特性; 发现这个子集是这项工作的关键问题。 我们将这一问题发展成一种基于梯度的扰动最大化方法, 在输入特性空间中发现这个子集, 与提供者使用的预测模型的功能有关。 在确定子集、 我们的框架、 Cloak 之后, 使用通过一个单独的梯度优化程序发现的不同保存常值来抑制其余特性。 我们显示, Cloak 不一定需要服务供应商的合作, 而不是正常服务, 并且可以在我们只能使用服务供应商模型黑盒的场景中应用。 我们理论上保证 Cloak 的优化会减少数据与发送的筛选表情之间的上层( MI) 。 实验结果显示, Cloak 将输入和筛选表情之间的相互信息减少85. 01%, 而使用率只有微不足道的减少( 1. 42 % ) 。 此外, 我们显示 Cloak 的能力会大大降低 Cloak 和 格式的能力。