Despite intense interest and considerable effort, the current generation of neural networks suffers a significant loss of accuracy under most practically relevant privacy training regimes. One particularly challenging class of neural networks are the wide ones, such as those deployed for NLP typeahead prediction or recommender systems. Observing that these models share something in common--an embedding layer that reduces the dimensionality of the input--we focus on developing a general approach towards training these models that takes advantage of the sparsity of the gradients. More abstractly, we address the problem of differentially private Empirical Risk Minimization (ERM) for models that admit sparse gradients. We demonstrate that for non-convex ERM problems, the loss is logarithmically dependent on the number of parameters, in contrast with polynomial dependence for the general case. Following the same intuition, we propose a novel algorithm for privately training neural networks. Finally, we provide an empirical study of a DP wide neural network on a real-world dataset, which has been rarely explored in the previous work.


翻译:尽管人们对此兴趣极大,而且付出了相当大的努力,但目前一代神经网络在大多数实际相关的隐私培训制度下却大大丧失了准确性。一个特别具有挑战性的神经网络类别是广阔的网络,例如为NLP型头预测或建议系统部署的网络。注意到这些模型在共同嵌入层中具有某种共同特征,降低了投入-我们重点的维度,即开发一种通用方法来培训这些模型,从而利用梯度的广度。更抽象地说,我们处理的是允许稀疏梯度模型的差别化私人经验风险最小化问题。我们证明,对于非软体机构风险管理问题,损失是在逻辑上取决于参数数量,而对于一般情况则取决于多面性依赖性。根据同样的直觉,我们建议对私人培训神经网络进行新的算法。最后,我们从经验上研究了关于真实世界数据集的DP宽度神经网络,以前的工作很少对此加以探讨。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Arxiv
0+阅读 · 2021年6月5日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Top
微信扫码咨询专知VIP会员