Image-to-image (I2I) translation is usually carried out among discrete domains. However, image domains, often corresponding to a physical value, are usually continuous. In other words, images gradually change with the value, and there exists no obvious gap between different domains. This paper intends to build the model for I2I translation among continuous varying domains. We first divide the whole domain coverage into discrete intervals, and explicitly model the latent style code for the center of each interval. To deal with continuous translation, we design the editing modules, changing the latent style code along two directions. These editing modules help to constrain the codes for domain centers during training, so that the model can better understand the relation among them. To have diverse results, the latent style code is further diversified with either the random noise or features from the reference image, giving the individual style code to the decoder for label-based or reference-based synthesis. Extensive experiments on age and viewing angle translation show that the proposed method can achieve high-quality results, and it is also flexible for users.


翻译:图像到图像翻译( I2I) 通常在离散域间进行。 但是, 图像域, 通常与物理值相对应, 通常是连续的。 换句话说, 图像随着值逐渐变化, 不同域间没有明显差距 。 本文打算将I2I 翻译模型建在连续的不同域间间。 我们首先将整个域覆盖分成离散间隔, 并明确为每个间隔中心的潜在样式代码建模。 处理连续翻译, 我们设计编辑模块, 沿着两个方向修改潜在样式代码。 这些编辑模块有助于限制域中心的代码, 以便让模型更好地了解它们之间的关系。 要取得不同的结果, 潜在样式代码会随着引用图像的随机噪音或特征而进一步多样化, 将单个样式代码赋予基于标签或基于参考的合成的解码。 年龄和角度翻译的广泛实验显示, 拟议的方法可以取得高质量结果, 用户也会灵活。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
82+阅读 · 2020年9月27日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
17+阅读 · 2021年1月21日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员