Cellular vehicle-to-everything (C-V2X) has been continuously evolving since Release 14 of the 3rd Generation Partnership Project (3GPP) for future autonomous vehicles. Apart from automotive safety, 5G NR further bring new capabilities to C-V2X for autonomous driving, such as real-time local update, and coordinated driving. These capabilities rely on the provision of low latency and high reliability from 5G NR. Among them, a basic demand is broadcasting or multicasting environment update messages, such as cooperative perception data, with high reliability and low latency from a Road Side Unit (RSU) or a base station (BS). In other words, broadcasting multiple types of automotive messages with high reliability and low latency is one of the key issues in 5G NR C-V2X. In this work, we consider how to select Modulation and Coding Scheme (MCS), RSU/BS, Forward Error Correction (FEC) code rate, to maximize the system utility, which is a function of message delivery reliability. We formulate the optimization problem as a nonlinear integer programming problem. Since the optimization problem is NP-hard, we propose an approximation algorithm, referred to as the Hyperbolic Successive Convex Approximation (HSCA) algorithm, which uses the successive convex approximation to find the optimal solution. In our simulations, we compare the performance of HSCA with those of three algorithms respectively, including the baseline algorithm, the heuristic algorithm, and the optimal solution. Our simulation results show that HSCA outperforms the baseline and the heuristic algorithms and is very competitive to the optimal solution.


翻译:自第三代伙伴关系项目(C-V2X)第14版第14版发布以来,对未来自主车辆而言,电动车辆到便捷状态(C-V2X)一直在不断演变。除了汽车安全外,5GNR还给C-V2X带来了新的自动驾驶能力,如实时本地更新和协调驾驶。这些能力依赖于5GNNR提供低潜值和高可靠性。其中一项基本需求是广播或多播环境更新信息,如合作认知数据,来自公路站站或基地站(BS)的高度可靠性和低潜值。换句话说,广播具有高度可靠性和低潜值的多种类型汽车信息是5GNCC-V2X自动驾驶的关键问题之一。在这项工作中,我们考虑如何从5GNC CRC-V2X中选择调制和调制计划(MCS)、RSU/BSB、前期错误校正校正(FC)代码率,以最大限度地使用系统效用,这是我们发送信息的一个功能。我们把优化问题作为非线级整的基线程序,我们把优化问题作为非基调的模拟程序,而将SLILLLLLLLLLLLLL的升级分别用来表示,这是最优化的升级的运行的运行的运行问题。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员