This paper explores the issue of enabling Ultra-Reliable Low-Latency Communications (URLLC) in view of the spatio-temporal correlations that characterize real 5th generation (5G) Industrial Internet of Things (IIoT) networks. In this context, we consider a common Standalone Non-Public Network (SNPN) architecture as promoted by the 5G Alliance for Connected Industries and Automation (5G-ACIA), and propose a new variant of the 5G NR semi-persistent scheduler (SPS) to deal with uplink traffic correlations. A benchmark solution with a "smart" scheduler (SSPS) is compared with a more realistic adaptive approach (ASPS) that requires the scheduler to estimate some unknown network parameters. We demonstrate via simulations that the 1-ms latency requirement for URLLC is fulfilled in both solutions, at the expense of some complexity introduced in the management of the traffic. Finally, we provide numerical guidelines to dimension IIoT networks as a function of the use case, the number of machines in the factory, and considering both periodic and aperiodic traffic.
翻译:本文探讨了鉴于真实第五代(5G)物业工业互联网(IIoT)网络的特征,使超可靠低寿命通信(URLLLC)成为现实第五代(5G)工业互联网(IIOT)网络的特征,使超可靠低寿命通信(URLLC)成为可能的问题。在这方面,我们考虑了由5G连通工业和自动化联盟(5G-ACIA)推动的通用独立非公共网络(SNPN)架构,并提出了5G NR半持久性调度系统(SPS)的新变体,以处理交通关联。一个“智能”调度器(SSPSPS)的基准解决方案与更现实的适应方法(ASPS)相比较,后者要求调度器估算一些未知的网络参数。我们通过模拟表明,对URLC的1米长要求在两种解决方案中都得到了满足,而牺牲了在交通管理中引入的某些复杂性。最后,我们为作为使用案例、工厂机器数量以及考虑定期和周期交通的功能的IIOT网络提供了数字指南。</s>