This paper presents sub-Terahertz (THz) radio propagation measurements at 142 GHz conducted in four factories with various layouts and facilities to explore sub-THz wireless channels for smart factories in 6G and beyond. Here we study spatial and temporal channel responses at 82 transmitter-receiver (TX-RX) locations across four factories in the New York City area and over distances from 5 m to 85 m in both line-of-sight (LOS) and non-LOS (NLOS) environments. The measurements were performed with a sliding-correlation-based channel sounder with 1 GHz RF bandwidth with steerable directional horn antennas with 27 dBi gain and 8\degree~half-power beamwidth at both TX and RX, using both vertical and horizontal antenna polarizations, yielding over 75,000 directional power delay profiles. Channel measurements of two RX heights at 1.5 m (high) emulating handheld devices and at 0.5 m (low) emulating automated guided vehicles (AGVs) were conducted for automated industrial scenarios with various clutter densities. Results yield the first path loss models for indoor factory (InF) environments at 142 GHz and show the low RX height experiences a mean path loss increase of 10.7 dB and 6.0 dB when compared with the high RX height at LOS and NLOS locations, respectively. Furthermore, flat and rotatable metal plates were leveraged as passive reflecting surfaces (PRSs) in channel enhancement measurements to explore the potential power gain on sub-THz propagation channels, demonstrating a range from 0.5 to 22 dB improvement with a mean of 6.5 dB in omnidirectional channel gain as compared to when no PRSs are present.


翻译:本文介绍了在四家工厂和各种布局和设施为探索6G及以后智能工厂的亚THz无线频道,在四家工厂为6G及以后的智能工厂进行142 GHz 的低压透射测量。这里我们研究TX和RX四家工厂82个发射机接收器(TX-RX)的空间和时间频道反应,在纽约市地区四家工厂进行82个发射机接收器(TX-RX)的位置,在视线(LOS)和非LOS PLOS (NLOS)环境中从5米到85米之间的距离。测量用滑动式螺旋透射线频道声音探测仪进行测量,1 GHZ RF带带带带带宽1 GHz RF带宽带带宽带带带带带带带带带可导航光无线无线的带宽带宽带宽带带宽带宽带带带宽的带宽带宽,TX和RX带宽8°带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽的色带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
25+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
37+阅读 · 2021年2月10日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
25+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员