We present an optimal rate convergence analysis for a second order accurate in time, fully discrete finite difference scheme for the Cahn-Hilliard-Navier-Stokes (CHNS) system, combined with logarithmic Flory-Huggins energy potential. The numerical scheme has been recently proposed, and the positivity-preserving property of the logarithmic arguments, as well as the total energy stability, have been theoretically justified. In this paper, we rigorously prove second order convergence of the proposed numerical scheme, in both time and space. Since the CHNS is a coupled system, the standard $\ell^\infty (0, T; \ell^2) \cap \ell^2 (0, T; H_h^2)$ error estimate could not be easily derived, due to the lack of regularity to control the numerical error associated with the coupled terms. Instead, the $\ell^\infty (0, T; H_h^1) \cap \ell^2 (0, T; H_h^3)$ error analysis for the phase variable and the $\ell^\infty (0, T; \ell^2)$ analysis for the velocity vector, which shares the same regularity as the energy estimate, is more suitable to pass through the nonlinear analysis for the error terms associated with the coupled physical process. Furthermore, the highly nonlinear and singular nature of the logarithmic error terms makes the convergence analysis even more challenging, since a uniform distance between the numerical solution and the singular limit values of is needed for the associated error estimate. Many highly non-standard estimates, such as a higher order asymptotic expansion of the numerical solution (up to the third order accuracy in time and fourth order in space), combined with a rough error estimate (to establish the maximum norm bound for the phase variable), as well as a refined error estimate, have to be carried out to conclude the desired convergence result.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员