We propose a method for generalizing deep learning for 3D point cloud registration on new, totally different datasets. It is based on two components, MS-SVConv and UDGE. Using Multi-Scale Sparse Voxel Convolution, MS-SVConv is a fast deep neural network that outputs the descriptors from point clouds for 3D registration between two scenes. UDGE is an algorithm for transferring deep networks on unknown datasets in a unsupervised way. The interest of the proposed method appears while using the two components, MS-SVConv and UDGE, together as a whole, which leads to state-of-the-art results on real world registration datasets such as 3DMatch, ETH and TUM. The code is publicly available at https://github.com/humanpose1/MS-SVConv .
翻译:我们提出在新的、完全不同的数据集上推广3D点云的深度学习方法,该方法基于两个组成部分:MS-SVConv和UDGE。使用多层Sparse Voxel Convolution,MS-SVConv是一个快速深的神经网络,从点云中输出3D登记在两个场景之间。UDGE是以一种不受监督的方式传输关于未知数据集的深度网络的算法。在使用MS-SVConv和UDGE这两个组成部分时,出现拟议方法的兴趣,它们作为一个整体,导致3DMatch、ETH和TUM等真实世界登记数据集的最新结果。该代码可在https://github.com/humanpose1/MS-SVConv查阅 https://github. com/humanpose1/MS-SVConv。