In the realm of machine learning, the study of anomaly detection and localization within image data has gained substantial traction, particularly for practical applications such as industrial defect detection. While the majority of existing methods predominantly use Convolutional Neural Networks (CNN) as their primary network architecture, we introduce a novel approach based on the Transformer backbone network. Our method employs a two-stage incremental learning strategy. During the first stage, we train a Masked Autoencoder (MAE) model solely on normal images. In the subsequent stage, we apply pixel-level data augmentation techniques to generate corrupted normal images and their corresponding pixel labels. This process allows the model to learn how to repair corrupted regions and classify the status of each pixel. Ultimately, the model generates a pixel reconstruction error matrix and a pixel anomaly probability matrix. These matrices are then combined to produce an anomaly scoring matrix that effectively detects abnormal regions. When benchmarked against several state-of-the-art CNN-based methods, our approach exhibits superior performance on the MVTec AD dataset, achieving an impressive 97.6% AUC.
翻译:在机器学习领域,图像数据中的异常检测和定位研究得到了广泛关注,特别是在工业缺陷检测等实际应用中。虽然现有方法中绝大部分主要使用卷积神经网络(CNN)作为主要网络架构,但我们提出了一种基于Transformer骨干网络的新方法。我们的方法采用两阶段增量式学习策略。在第一阶段,我们仅使用正常图像训练掩蔽自编码器(MAE)模型。在随后的阶段中,我们应用像素级数据增强技术来生成损坏的正常图像及其对应的像素标签。这个过程使得模型学习如何修复损坏区域和分类每个像素的状态。最终,模型生成像素重构误差矩阵和像素异常概率矩阵。这些矩阵然后结合起来产生异常评分矩阵,该矩阵有效地检测异常区域。在MVTec AD数据集上与几种最先进的基于CNN的方法进行基准测试时,我们的方法在AUC方面表现优异,达到97.6%。