The image-based diagnosis is now a vital aspect of modern automation assisted diagnosis. To enable models to produce pixel-level diagnosis, pixel-level ground-truth labels are essentially required. However, since it is often not straight forward to obtain the labels in many application domains such as in medical image, classification-based approaches have become the de facto standard to perform the diagnosis. Though they can identify class-salient regions, they may not be useful for diagnosis where capturing all of the evidences is important requirement. Alternatively, a counterfactual explanation (CX) aims at providing explanations using a casual reasoning process of form "If X has not happend, Y would not heppend". Existing CX approaches, however, use classifier to explain features that can change its predictions. Thus, they can only explain class-salient features, rather than entire object of interest. This hence motivates us to propose a novel CX strategy that is not reliant on image classification. This work is inspired from the recent developments in generative adversarial networks (GANs) based image-to-image domain translation, and leverages to translate an abnormal image to counterpart normal image (i.e. counterfactual instance CI) to find discrepancy maps between the two. Since it is generally not possible to obtain abnormal and normal image pairs, we leverage Cycle-Consistency principle (a.k.a CycleGAN) to perform the translation in unsupervised way. We formulate CX in terms of a discrepancy map that, when added from the abnormal image, will make it indistinguishable from the CI. We evaluate our method on three datasets including a synthetic, tuberculosis and BraTS dataset. All these experiments confirm the supremacy of propose method in generating accurate CX and CI.
翻译:基于图像的诊断现已成为现代自动化辅助诊断的一个重要方面。 为了让模型能够生成像素级诊断, 基本上需要像素级的地面真相标签。 但是, 由于通常不是直接前方以获得医学图像等许多应用领域的标签, 基于分类的方法已成为进行诊断的事实上的标准。 虽然它们可以识别等级高度区域, 但是它们可能不可用于诊断, 捕捉所有证据是重要的要求。 或者, 一种反事实解释( CX) 的目的是使用一种简单的推理过程来提供解释 : “ 如果 X 没有发生, Y 也不会进行。 ” 但是, 现有的 CX 方法通常不是直接前方去获得在医学图像等许多应用领域的标签。 因此, 它们只能解释等级性特征, 而不是整个感兴趣的对象。 这促使我们提出一种新的 CX 战略, 不依赖图像分类。 这项工作源于基于图像到域域翻译的直径直径网络( GANs) 的最新发展, 我们从图像到直径直径翻译, 直径的C 和直径对等图像数据进行反向反向反向反向反向图像的反向分析。 。, 它们只能解释,, 包括正向直向直径图像。 。 直向直向直向直对等图像,, 直到直到直到直向的图像的图像, 。