Efficient modeling of relational data arising in physical, social, and information sciences is challenging due to complicated dependencies within the data. In this work, we build off of semi-implicit graph variational auto-encoders to capture higher-order statistics in a low-dimensional graph latent representation. We incorporate hyperbolic geometry in the latent space through a Poincare embedding to efficiently represent graphs exhibiting hierarchical structure. To address the naive posterior latent distribution assumptions in classical variational inference, we use semi-implicit hierarchical variational Bayes to implicitly capture posteriors of given graph data, which may exhibit heavy tails, multiple modes, skewness, and highly correlated latent structures. We show that the existing semi-implicit variational inference objective provably reduces information in the observed graph. Based on this observation, we estimate and add an additional mutual information term to the semi-implicit variational inference learning objective to capture rich correlations arising between the input and latent spaces. We show that the inclusion of this regularization term in conjunction with the Poincare embedding boosts the quality of learned high-level representations and enables more flexible and faithful graphical modeling. We experimentally demonstrate that our approach outperforms existing graph variational auto-encoders both in Euclidean and in hyperbolic spaces for edge link prediction and node classification.


翻译:对物理、社会和信息科学中产生的关系数据进行高效建模具有挑战性,因为数据内部依赖性复杂。在这项工作中,我们从半隐含图形变异自动编码器中建立半隐含图形自动编码器,以以低维图形潜在代表形式获取更高层次的统计数据。我们通过一个 Poincare 嵌入以高效代表显示等级结构的图表,将双曲几何方法纳入潜藏空间。为了处理传统变异推断中天真的后视潜在分布假设,我们使用半隐含等级变异贝来隐含地捕捉特定图形数据的后端,这些数据可能显示重尾部、多种模式、偏差和高度关联的潜伏结构。我们显示,现有的半隐含不显性变异图目标会减少观测图中的信息。基于这一观察,我们估计并增加一个半隐含隐含的变异种学习目标,以捕捉到输入空间和潜在空间之间产生的丰富关联。我们显示,将这一整形术语与Poincare 嵌入模型、多种模式、隐蔽度和高度隐含的潜伏结构,从而展示了我们所学的图像水平的高级图变变的图像,从而得以更灵活地显示了我们目前的图变的图像的图像和变形图。

0
下载
关闭预览

相关内容

【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员